Amino acid regulation of TOR complex 1.

نویسندگان

  • Joseph Avruch
  • Xiaomeng Long
  • Sara Ortiz-Vega
  • Joseph Rapley
  • Angela Papageorgiou
  • Ning Dai
چکیده

TOR complex 1 (TORC1), an oligomer of the mTOR (mammalian target of rapamycin) protein kinase, its substrate binding subunit raptor, and the polypeptide Lst8/GbetaL, controls cell growth in all eukaryotes in response to nutrient availability and in metazoans to insulin and growth factors, energy status, and stress conditions. This review focuses on the biochemical mechanisms that regulate mTORC1 kinase activity, with special emphasis on mTORC1 regulation by amino acids. The dominant positive regulator of mTORC1 is the GTP-charged form of the ras-like GTPase Rheb. Insulin, growth factors, and a variety of cellular stressors regulate mTORC1 by controlling Rheb GTP charging through modulating the activity of the tuberous sclerosis complex, the Rheb GTPase activating protein. In contrast, amino acids, especially leucine, regulate mTORC1 by controlling the ability of Rheb-GTP to activate mTORC1. Rheb binds directly to mTOR, an interaction that appears to be essential for mTORC1 activation. In addition, Rheb-GTP stimulates phospholipase D1 to generate phosphatidic acid, a positive effector of mTORC1 activation, and binds to the mTOR inhibitor FKBP38, to displace it from mTOR. The contribution of Rheb's regulation of PL-D1 and FKBP38 to mTORC1 activation, relative to Rheb's direct binding to mTOR, remains to be fully defined. The rag GTPases, functioning as obligatory heterodimers, are also required for amino acid regulation of mTORC1. As with amino acid deficiency, however, the inhibitory effect of rag depletion on mTORC1 can be overcome by Rheb overexpression, whereas Rheb depletion obviates rag's ability to activate mTORC1. The rag heterodimer interacts directly with mTORC1 and may direct mTORC1 to the Rheb-containing vesicular compartment in response to amino acid sufficiency, enabling Rheb-GTP activation of mTORC1. The type III phosphatidylinositol kinase also participates in amino acid-dependent mTORC1 activation, although the site of action of its product, 3'OH-phosphatidylinositol, in this process is unclear.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

TORC1 controls degradation of the transcription factor Stp1, a key effector of the SPS amino-acid-sensing pathway in Saccharomyces cerevisiae.

The target of rapamycin (TOR) signaling pathway plays crucial roles in the regulation of eukaryotic cell growth. In Saccharomyces cerevisiae, nitrogen sources in the extracellular environment activate the TOR signaling pathway. However, the precise mechanisms underlying the regulation of TOR activity in response to extracellular nitrogen sources are poorly understood. Here, we report that degra...

متن کامل

TOR complex 2-Ypk1 signaling is an essential positive regulator of the general amino acid control response and autophagy.

The highly conserved Target of Rapamycin (TOR) kinase is a central regulator of cell growth and metabolism in response to nutrient availability. TOR functions in two structurally and functionally distinct complexes, TOR Complex 1 (TORC1) and TOR Complex 2 (TORC2). Through TORC1, TOR negatively regulates autophagy, a conserved process that functions in quality control and cellular homeostasis an...

متن کامل

Target of rapamycin-mediated amino acid signaling in mosquito anautogeny.

Mosquitoes generate an enormous burden on human health worldwide. Disease-transmitting species use a reproductive strategy, termed anautogeny, that requires a blood meal to initiate egg maturation. Whereas this strategy is important for driving disease transmission, the molecular mechanisms underlying this phenomenon are still poorly understood. The production of yolk protein precursors (YPPs),...

متن کامل

Raptor, a Binding Partner of Target of Rapamycin (TOR), Mediates TOR Action

The mammalian target of rapamycin (mTOR) controls cell growth in response to amino acids and growth factors, in part by regulating p70 S6 kinase alpha (p70 alpha) and eukaryotic initiation factor 4E binding protein 1 (4EBP1). Raptor (regulatory associated protein of mTOR) is a 150 kDa mTOR binding protein that is essential for TOR signaling in vivo and also binds 4EBP1 and p70alpha through thei...

متن کامل

Mks1 in Concert with TOR Signaling Negatively Regulates RTG Target Gene Expression in S. cerevisiae

The target of rapamycin (TOR) signaling pathway allows eukaryotic cells to regulate their growth in response to nutritional cues. In S. cerevisiae, TOR controls the expression of genes involved in several nutrient-responsive biosynthetic pathways. In particular, we have demonstrated that TOR negatively regulates a concise cluster of genes (termed RTG target genes) that encode mitochondrial and ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • American journal of physiology. Endocrinology and metabolism

دوره 296 4  شماره 

صفحات  -

تاریخ انتشار 2009